If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-200=0
a = 20; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·20·(-200)
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{10}}{2*20}=\frac{0-40\sqrt{10}}{40} =-\frac{40\sqrt{10}}{40} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{10}}{2*20}=\frac{0+40\sqrt{10}}{40} =\frac{40\sqrt{10}}{40} =\sqrt{10} $
| −(6k−4)=−6(k+8) | | 60=5dd= | | x(x+2)+(x-8)=50 | | 4x2–121=0 | | 1/2x+8/16+3/2x=10 | | 1/2x+8/16+3/2=10 | | | | 7n+15=5n−9 | | 2-5x=53 | | 2/x+1+1/x-1=1 | | -13x-7/12=1 | | 0,42x+9784=X | | |−13x−7|12=1 | | x-11/2=35 | | 3n+14=5n-12 | | 120t-16t^2=216 | | -3(x+4)=-2(x-3)-5 | | 3,14x^2=10 | | 15–7=2x | | 4y^²=80 | | 9x²-9x+3=0 | | 3x−12=21. | | x/6+8=x/8+6 | | 5x=65. | | 9x^2+48x+55=0 | | 25=4y | | 16^x-17*4^x+16=0 | | 3x/7=-2x/5 | | 3x2+14x=0 | | 34(19-4.5)=12(4x-7)+26.5 | | 9c–2=8c–8 | | (x2)+6x+9=(x2)-2x |